Gesture-Based Control of Augmented Webcam
Experience

Ashwin Bhat
abhat4
Johns Hopkins University
abhat4@jhu.edu

I. INTRODUCTION

As there is an increased focus on human-
computer interaction, there is great emphasis on
creating new, user-friendly ways of allowing hu-
mans to control computers [1]. In this project, we
developed an augmented webcam experience that
could be intuitively controlled by users. A large
part of creating this environment was developing
a robust method of finger-tracking to allow for
the users to easily choose different filters to apply
in the webcam video and give them a sense of
more futuristic interaction than a simple touchpad
or computer mouse. In addition, this setup re-
quired no extra hardware besides a webcam, which
nowadays comes built-in to most laptops. The
full implementation of this augmented webcam
experience was done using eye tracking and finger
tracking.

A. Related Works

Previous methods of hand-tracking that were
very advanced or accurate often required extra
hardware or were computationally expensive and
made it difficult to do finger tracking on real-
time video without significant latency. The Kinect
sensor is often used for hand tracking because
of the infrared camera that gives depth images.
Some studies have used it to recognize hands and
classify gestures [2]. One of the most advanced
articulated hand tracking implementations using
the Kinect sensor was done by Microsoft Research.
This setup works very well and allows for fully-
articulated hand tracking via depth images in real-
time [3]. However, it does have a limitation in real-
world use because it requires an infrared camera,
which most people do not have. The Kinect sensor,

Eric Chiang
echiang3
Johns Hopkins University
echiang3@jhu.edu

while somewhat portable, is also not as seamless
an experience as using a laptop integrated webcam
or even a USB-interfaced webcam. As that was
our goal in making our augmented webcam expe-
rience, we steered clear of any camera device be-
sides a simple webcam and made an environment
where the user could have their fingers tracked
and use their fingers to control the output of the
webcam (change filters, remove filters, etc).

B. Our Approach

Our approach, in broad strokes, is below. The
details shall be discusses in following sections.

1) Detect and track eyes in video feed using a
combination of a cascading object detector
and extraction of salient features around the
eyes to track them if moved.

2) Track fingers in video feed using threshold-
ing and morphological operators.

3) Apply facial masks/overlays.

II. EYE TRACKING

We describe here the method utilized for track-
ing of the eyes in the video feed. We used an
algorithm that was known for its robustness in face
tracking and has also been applied to eye tracking.
However, while it is fairly robust the computational
cost can become too expensive when running on
every frame of a live video while also applying
other image processing. This led to occasional lags
or freezes in the output video. To reduce the cost
of eye-tracking, we implemented a less expensive
feature tracking algorithm to detect specific points
in the region where eyes were detected. Later on,
we decided upon using a combination of the two



algorithms. This shall be discussed in greater detail
below.

A. Viola-Jones Algorithm

We first utilized the Viola-Jones algorithm,
which involves using Haar Features and represent-
ing the image with an integral image.

For learning, the Viola-Jones algorithm uses
a variant of Adaboost training and then utilizes
cascading classifiers. The use of cascading classi-
fiers is highly important as it allows for the use
of simple classifiers to pick out negative images
and then adds in complex classifiers to reduce to
the false-positive rate to an almost insignificant
percentage [4].

The Viola-Jones algorithm is often used for
face-detection, but it can easily be used for eye-
detection, as well. When used for eye detection, it
is still highly accurate with a low false-positive
rate. In all of our observations, the only false-
positive was an instance when the eyebrows were
detected as a second pair of eyes right above the
actual eyes of the person in the frame.

Fig. 1: Eye Detection/Tracking with Viola-Jones
Algorithm at Multiple Instances

However, while the Viola-Jones algorithm is
rather robust and has a very low false positive
percentage, it does begin to start being computa-
tionally expensive when run on every single frame
of real-time video. This is even more of an issue

when trying to detect the eyes while also tracking
the fingers as described later on.

B. Kanade-Lucas-Tomasi Feature Tracking

In order to reduce the computational cost, we de-
cided to combine the Kanade-Lucas-Tomasi (KLT)
feature tracking algorithm with our existing Viola-
Jones eye tracker. The initial difference was that
we would run the eye tracker once, at the very
beginning of the live video feed, instead of on
every single frame.

e+ Fh gt

Fig. 2: Eye Tracking with KLT Algorithm

After that, we used the KLT algorithm for fea-
ture extraction to find the important points inside
the bounded box where our Viola-Jones eye tracker
found eyes in the video feed. The points were
determined by finding corners using the minimum
eigenvalue algorithm. With the salient features
now known, those points were tracked and the
geometric transformation as the points moved from
frame to frame was estimated [5]. This let us keep
a bounding box around those same set of points as
they moved in the image.

The bounding box was important to have be-
cause it was used in the calculations for face mask-
ing and face filters. One of the main benefits of
using the KLT algorithm, aside from the increased
efficiency, was that the points were a bit more
resistant to the changes in angle and rotation that
we found to be shortcomings in eye tracking with
the Viola-Jones algorithm.

This method of a single instance of eye tracking
followed by the KLT algorithm to keep track of



the eyes worked fairly well, but it did have a few
problems. The primary one was that if part of
the eyes were moved off screen momentarily, the
points that were being used to track the eyes were
lost. If the eyes were moved back on screen those
points would not be detected again by the basic
KLT algorithm.

Another issue was that after many frames and
movements, some points would begin to be con-
sidered outliers based on the calculations of the
KLT implementation and then the entirety of the
eyes were no longer detected. Therefore, despite
the increase in speed of the eye tracking and the
decreased computational cost, there was a funda-
mental issue with this eye tracking method due to
the decreased accuracy.

C. Combined Approach

In order to compensate for this issue, we de-
cided to make a method that compromised on
speed/computational cost and accuracy. In this
method we used the Viola-Jones eye tracking more
often than just at the start of the video feed and
were able to have the eye tracking and KLT feature
tracking work together to achieve better speed than
just the Viola-Jones algorithm and better accuracy
than when just the KLT algorithm was doing the
frame to frame tracking.

After initially finding the eyes and then using
KLT to track the salient points in the eye region,
the eye detector would once again be run on a
single frame in the video. Based on some trial
error, we found every 90 frames to be a good
frequency of running the eye detector on the video.
Once the eyes were detected, the KLT algorithm
was run to find salient features in the newly found
eye region and then those new points were used to
for the next 90 frames before the eye detector was
utilized again.

Naturally, this does slightly increase the com-
putational cost since the Viola-Jones eye detector
has to be run more than the single time it was
used when allowing the KLT tracker to do the
brunt of the work. However, it was still much more
lightweight than running the Viola-Jones algorithm
on every single frame as we initially tried. That
method used the eye detector 90 times in three
seconds, whereas this combined approach only
used the eye detector once in three seconds.

Algorithm 1: Eye Tracking-Combined Method

Input: V - A live video stream
Output: BB - A bounding box containing
eyes (changes every frame)
Initialize Video Stream V
Take a single frame of video
I < V(current)
Detect the eyes and initialize a bounding box
BB < detectEyes(I)
Initialize list of salient features (corners) as f
f < corners(BB — 1)
Initialize a list for previous points as prev
prev < f
Initialize a forward transformation as ¢ f
while V' continues do
if frameCount mod 90 == 0 then
I <V (current)
BB <« detectEyes(I)
if eyes are detected then
f < corners(BB — 1)

prev<— f
end

end

I < V(current)

f < findPoints(I, prev)

tf < findTransform(prev, f)

Moves the bounding box to new eyes
region.

BB < forwardTF (BB,tf)

prev < f

return BB

end

Another benefit of this combined method was
that it improved the accuracy of our usage of
the Viola-Jones algorithm. The Viola-Jones eye
detection/tracking returned false negatives when a
person’s eyes in the video frame were rotated or
angled away from the camera. However, with this
combined method, if such an issue were to happen
when trying to re-detect the eyes, the previously
found salient features from the KLT algorithm
would continue be used. Thus, if eyes were de-
tected at some point previously, the KLT algorithm
still kept track of them and reduced the rate of
false negatives. Therefore, this combined approach
improved the robustness of the eye tracking.



We also implemented facial overlays as part of
the augmented webcam experience and to have a
fun feature. Depending on the result of the fingers
found/tracked as described in the section below,
a different face filter was placed into the video
feed. The position was determined based on the
bounding box that was continually returned by the
eye tracking algorithm with some shifts depending
on the type of filter. For example, a beard filter
would be below the eye bounding box, while a
sunglasses filter would be able to go near or in the
bounding box.

ITI. FINGER TRACKING

We describe here our approach to counting the
fingers shown on a hand. On a high level, we
first thresholded the hand to isolate it. We then
used morphological operators to isolate the palm
of the hand and subtracted the result of this from
the original thresholded binary image. This result-
ing binary image contained only the thresholded
fingers which were then counted. The subsequent
sections will explain in-depth each aspect of our
method.

Algorithm 2: Finger Tracking

Input: V - A live video stream
Output: F - Tracked fingers
Initialize Hand Image as H
Initialize Palm Image as P
Initialize Finger Image as fing
Initialize Tracked Fingers as F
while V' continues do

H <« thresholdHand (V)

P <« isolatePalm(H)

fing < H —P

F « findFingers(fing)

return F
end

A. Thresholding Technique and Preprocessing

First, using the bounding box from the Eye
Tracking method as described above, we assumed
that the area directly below the bounding was the
subject’s body, so we immediately masked that out
in order to decrease the complexity of thresholding
the hand cleanly.

Fig. 3: (a) Image captured from USB-interfaced
webcam, (b) Thresholded image, (c) Palm Isola-
tion, (d) Finger Isolation

We experimented with a couple different thresh-
olding techniques to isolate the hand.

We first attempted to utilize a skin-tone based
thresholding technique describe by Jusoh et al.
which involved thresholding the hue component
of an image to get candidate areas of skin in the
image [6]. These candidate areas were then used to
determine areas to do RGB thresholding. However,
with our testing we found this method had a couple
of limitations in our application. Firstly, with the
steps involved in this thresholding technique, we
found that there was a noticeable delay in process-
ing images. In some cases, there was noticeable
hanging while performing real-time thresholding.
Secondly, there were issues with detecting a range
of skin colors. The technique worked best with
peach-colored skin in well-lit conditions; without
those conditions, the shareholder would not func-
tion accurately.

We decided to use a traditional intensity-based
thresholding technique using gray-scale images.
With stable lighting and a mostly homogeneous
background, we were able to threshold hands
found in the images quickly and consistently as
seen in Figure 3a.

After the hand was thresholded based on inten-
sity, we applied an algorithm that filled holes in
binary images (Figure 3b) in order to prepare it
for the next steps.



B. Binary Morphological Operators

Once the hand was isolated with thresholding,
we used morphological operators to determine the
count the hand displayed.

1) Palm Isolation: The first step was to isolate
the “palm” of the hand. In order to do this, we
first utilized binary erosion with a large circular
structuring element. This allowed us to effectively
erode any fingers extending from the palm. We
then used binary dilation on the palm in order to
smooth its edges, increase its area slightly, and
ensure that it acts as a proper mask of the palm
for the next step as shown in Figure 3c.

2) Finger Isolation: We subtracted the “palm
mask” from the original image to get a rough
binary image of the finger and applied one more
binary erosion with a small circular structuring
element to eliminate any remaining artifacts and
noise in the binary image. Lastly, we thresholded
the remaining binary elements by area in order to
isolate the final position and count of the fingers
as shown in Figure 3d.

IV. MASKS AND IMPLEMENATION

With algorithms for eye tracking and fin-
ger tracking, we could properly implement our
gesture-based masks.

Masks were overlaid on the frames of video
read in. The masks were scaled proportionally
to the size of the bounding boxes drawn around
the eyes. This ensured the masks scaled with
the user properly. We then applied an offset also
proportional the bounding box size to ensure the
mask stayed in relatively the same position as the
user moved.

We combined both algorithms into a script that
read in frames from a USB-interfaced webcam
and applied the mask in real-time using our eye
tracking method. Users were able to put up a
number of fingers, from zero to five, in order to
switch masks as shown in Figure 4.

One limitation we came across, as described
earlier, was significant slowdowns due to the com-
putationally expensive behavior of the Viola-Jones
Algorithm. At times, the webcam output would
skip frames, and it would sometimes even com-
pletely freeze. Our solution to this issue was to use

the KLT algorithm in conjunction with the Viola-
Jones algorithm. This significantly increased the
speed of our operation as described below.

As A
A Al

Fig. 4. Output from our implementation. (a) No
fingers hid all masks, (b-c) showing different fin-
gers changed the mask being used

V. EXPERIMENTAL RESULTS

While much of our results are qualitative, as in
we were observing the output video response to
ensure that fingers and eyes are being correctly
tracked, there were some attributed that we looked
at in determining the speed/accuracy of our system.

The primary accuracy we looked at was the ac-
curacy of eye tracking because in the course of our
experimentation we implemented three variations
of eye tracking. In our observation, the Viola-Jones
Algorithm, when not running alongside the finger
tracking ran rather quickly and detected eyes when
they came into the image frame. One of the main
problems with the accuracy was that too much
tilting or rotating of the subject’s head would result
in the cascading object detector no longer detecting
the person’s eyes, even though they were visible
in the image.

The implementation where we used the KLT
algorithm to do continuous eye tracking based on
feature points found in the eye region from the
cascading object detector being run on the video a
single time, was also flawed. The problem here was
that since feature extraction was based on those
points in the eye region from the very first time,
after a lot of motion and movement of the head,
some of those points were lost, and would not get



re-detected. While the eye detection/tracking with
this method was slightly more resistant to rotation
than just the cascading-object detector, losing the
eyes over time was not useful. Furthermore, the
lack of re-detection prevented our design from
being robust because a person moving half their
head out of the image would only have one eye
still tracked even when their entire head moved
back into the image.

The final combined method worked best in that
regard, because we catered it to meet our design
requirements. With the cascading object detector
being re-run every 90 frames, the eyes would
always be re-detected if lost momentarily, and
then the important features extracted by the KLT
algorithm were updated when the eyes were re-
detected, so if any salient points had somehow
been lost that was rectified at a fixed interval.

The primary factor in determining the speed of
our system was the frame rate of the webcam
video after it was processed and outputted with
tracked eyes and fingers. As mentioned previously,
when only using a cascading object detector for
eye detection in every single frame it resulted in
frame-rate drops. Table 1 quantifies the average
frame-rate in the different versions of eye track-
ing combined with finger tracking. Each of these
frame-rates is the average of 20 samples. Each
sample’s frame-rate was the average observed for
3000 frames of video with the roughly the same
movement of the test subject’s head and hand.

TABLE I: Table of the frame- rates (in fps) in
testing with Eye Tracking and Finger Tracking
(with differing Eye Tracking Methods

Viola-Jones + KLT
23 fps

Cascading Object Detector
12fps

As evident, the combined Viola-Jones and KLT
Algorithms approach has a higher frame-rate and
was subject to less frame-rate dropping. This was
a fast enough frame rate to have good quality
video output. The Viola-Jones eye detector alone
is fairly quick as well, as the frame-rates would
often approach 24 or 25 fps. However, since our
end goal was to actually doing finger tracking and
eye tracking together in real-time to create our

augmented experience, the 12 fps frame-rate when
tracking both was too low to have good video
output. The combined approach had a solid 23 fps
when doing both eye tracking and finger tracking
so it was clearly superior.

VI. CONCLUSION

In our project, we were able to develop an
augmented webcam experience that was fairly
robust for finger tracking and eye tracking. Due
our combination of the Viola-Jones Algorithm
with the KLT Algorithm and our computational
inexpensive method of finger tracking and gesture
recognition, we developed a system that works in
real-time without noticeable frame-rate dropping
or latency. Our next steps would be to expand this
environment beyond our novelty application of an
augmented webcam experience. Due to its speed
and lightweight computational cost, we believe it
could be applied to further intuitive control of
systems besides the just the webcam. Using the
webcam, we could use our finger tracking as an
interface for controlling the entire computer. For
example, because we can locate the fingers in the
image, we can use specific fingers as cursors or
even use the webcam as a keyboard input based on
where the user move their fingers in the perspective
of the video feed. Movement of a finger in specific
directions in the webcam view could also be used
to scroll in windows or switch windows, meaning
the user can control what they see on their screen
simply by waving their fingers around. These are
just a few possible situation we can apply our
system, and our next step would be exploring the
implementation of these.

VII. ACKNOWLEDGEMENTS

We thank the TAs and CAs for helping us
learn and understand the material. We’d like to
especially thank Dr. Austin Reiter for his guidance
in the class and on this project.

REFERENCES

[1] Rautaray, Siddharth S., and Anupam Agrawal. ”Vision based
hand gesture recognition for human computer interaction: a
survey.” Artificial Intelligence Review, 43.1 (2015): 1-54.

[2] Sharp, Toby, et al. ”Accurate, robust, and flexible real-time
hand tracking.” Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems, ACM, 2015.



(3]

(4]

(5]
(6]

Li, Yi. "Hand gesture recognition using Kinect.” Software
Engineering and Service Science (ICSESS), 2012 1IEEE 3rd
International Conference on. IEEE, 2012.

Viola, Paul, and Michael J. Jones. “Robust real-time face
detection.” International Journal of Computer Vision, 57.2
(2004): 137-154.

Bourel, Fabrice, Claude C. Chibelushi, and Adrian A. Low.
”Robust Facial Feature Tracking.” BMVC. 2000.

Jusoh, Rizal Mat, et al. ”Skin detection based on thresholding
in RGB and hue component.” Industrial Electronics and
Applications (ISIEA), 2010 IEEE Symposium on. IEEE, 2010.



